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Abstract—Satellites equipped with computing capabilities serve
as invaluable access platforms for 5G and beyond (NextG)
non-terrestrial networks (NTNs). They facilitate the continuous
execution of resource-intensive edge-assisted deep learning (DL)
tasks that are offloaded from Internet-of-Things (IoT) user
equipment (UEs) in remote areas. To this end, satellite access
network (SAN) resources need to be carefully “sliced”, consid-
ering both the constrained energy availability and the scarcity
of SAN resources. Existing SAN slicing approaches tend to treat
offloaded tasks conventionally, overlooking the intricate semantics
associated with DL tasks. In this paper, we propose semantic SAN
(SemSAN), the first semantic SAN slicing algorithm for NextG
AI-native NTNs. Our keen observations reveal that various DL
tasks (i) can tolerate different degrees of image compression,
and (ii) may yield equivalent model accuracy when employing
DNN models with different sizes. These observations inspire us to
further exploit the computation capability of a SAN to support
more tasks while still minimizing overall energy consumption.
After analyzing the characteristics of this optimization problem,
we propose an online greedy SemSAN slicing algorithm to
approximate its optimal solution. Extensive experiments verify
the effectiveness of SemSAN in energy saving and its ability
to support a substantial number of tasks, compared with other
baselines.

Index Terms—SAN, semantics, slicing, DL tasks

I. INTRODUCTION

SANs, which are traditionally used for a limited set of
applications, such as TV broadcasting and disaster man-
agement, have regained their shine in recent developments
of NextG NTNs [1–3]. The rise of emerging applications,
such as autonomous vehicles, drone-based delivery, precision
agriculture, and numerous yet-to-be-uncovered use cases, has
spurred extensive research in the realm of SAN to deliver
artificial intelligence (AI) services. Such AI-native SANs in
conjunction with the existing terrestrial infrastructures could
provide a seamless and ubiquitous global coverage, which is
precisely the vision of NextG networks.

While AI has certainly expanded the horizons of SAN
applications with diverse use cases, the integration of DL
tasks has substantially strained the SAN, particularly in terms
of power consumption and resource allocation. Commonly,
network slicing is a fundamental tool to alleviate this issue.
It allows network operators to virtualize and allocate the
computation and communication resources of SAN based on
their needs, leading to a substantial enhancement in SAN

resource utilization. Additionally, akin to the radio access net-
work (RAN) slicing technology for terrestrial infrastructures,
SAN slicing is fully supported by the Open RAN (O-RAN)
framework [4], which has been envisioned as the future for
mobile industry.

Nevertheless, in the AI-native NextG SAN, the scarcity of
power and network resources is notably exacerbated. Com-
pared to terrestrial infrastructures, satellites face limitations
not only in terms of their number but also in the finite energy
supplies on each satellite, which cannot be promptly replen-
ished. This makes it insufficient to rely solely on network
slicing to address the substantial computational burden and
energy consumption brought by DL tasks to the SAN. To
this end, in this paper, we delve into the semantics of the
DL tasks to further reduce network overhead by compress-
ing the task data. For instance, tasks like classifying cars
are semantically less complex than those involving bicycles,
allowing for more aggressive image compression if classifying
cars is the priority [5]. Furthermore, compressed images often
necessitate lightweight DNN models to maintain acceptable
model inference accuracy.

The introduction of semantics brings both opportunities
and challenges. On the one hand, it makes fuller use of the
computing power of SAN by allowing more DL tasks to be
processed at the same time. On the other hand, in the context
of semantic SAN slicing, the conflict between the number of
tasks processed and system energy consumption becomes more
pronounced. Solving this confliction, however, is particular
challenging due to (i) the dynamic SAN topology leads to
a constantly changing set of satellites visible to UEs and
their tasks, (ii) the unclear relationship between the DL task
compression degree, the choice of DNN model sizes and the
model inference accuracy.

In this paper, we propose Semantic Satellite Access Net-
work (SemSAN), the inaugural semantic and non-terrestrial
slicing approach to support SAN-assisted DL task processing
in NextG AI-native NTNs. SemSAN strives to maximize the
number of accepted DL tasks while still minimizing the system
energy consumption. This endeavor precisely encapsulates the
objective of our proposed optimization problem. Meanwhile,
the changing set of visible satellites to DL tasks is quantified
as placement constraints within the optimization problem.
Moreover, the relationships between task compression level
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Fig. 1: SemSAN system model

and DNN model size, as well as task compression level and
model inference accuracy, are modeled as piecewise functions
attainable through data-driven approaches. After analyzing the
characteristics of the SemSAN slicing optimization problem,
we propose a greedy online SemSAN slicing algorithm, which
not only approximates the optimal solutions to the optimiza-
tion problem, but is also practical for real-world execution.

The contributions are summarized as follows,
• We propose SemSAN, the first semantic and non-

terrestrial slicing approach for NextG AI-native SANs.
• We strike a balance between the number of tasks ac-

cepted by SemSAN and its energy consumption, ensuring
SemSAN not only meets the QoS requirements of UEs
in dynamic topologies but also leverages the benefits
brought by DL task’ semantic compression. (Section IV)

• We propose an online greedy SemSAN slicing algorithm
to implement SemSAN in practice. (Section IV)

• We conduct extensive experiments to testify the effective
of SemSAN in both energy saving and its ability to
support a substantial number of tasks. (Section V)

II. SYSTEM MODEL

A. Network Model

We consider a SAN shown in Fig 1, which consists of
remote UEs and satellites. The SAN is described as a graph
G = (S, E), where S = {1, . . . , s, . . . , S} represents satellites,
while E = {(s, s′)|s, s′ ∈ S, s 6= s′} represents the set of
transmission links. A task generated from a certain UE will
be submitted to SAN G for processing.

In order to reflect the dynamism of the SAN topology, we
consider a time horizon with T time slots, each of which has
the same time duration τ . The time slots are indexed by a set
T = {1, . . . , t, . . . , T}. The network topology is assumed to
be invariant in each time slot and may change between differ-
ent time slots. As a result, the network topology G is a graph
composed of T layers, where each layer G(t) corresponds to
a snapshot of the network. In practice, the time slot duration
is around 1 minute, while the DL tasks sent to the SAN for
inference are often delay sensitive, requiring a maximum delay
typically in the range of milliseconds to seconds [6]. This
fact implies that, compared to the variation of SAN topology,
the procedure of task scheduling and processing is transient.
Therefore, in this paper, the SAN topology is considered to
be fixed within one task scheduling period.

B. DL Task Model

The workloads are generated by applications running on
UEs. We define an application class as a high-level goal that
must be achieved through the execution of one or more DL
tasks with specific requirements. For example, a monitoring
application class could require the detection and tracking of
person or vehicle objects located in a remote area with a
minimum expected accuracy of 0.50 and maximum end-to-
end (E2E) delay of 800 ms [5].

Let A = {1, . . . , a, . . . , A} be the set of all application
classes, and U = {1, . . . , u, . . . , U} be the set of remote UEs
distributed in an area without cellular coverage. Compared to
satellites, the UEs’ movements are much slower. Therefore, the
relative motion between UEs and satellites mainly relies on the
movement of satellites, and the UEs can be regarded as quasi-
static. A task k can be uniquely identified at the system level
by a tuple (a, u, κ), where κ denotes the task index generated
by a UE. That is, a generic task is defined as k = (a, u, κ) ∈
K, where K is the set of all generated tasks.

For a given k ∈ K, we define its compression scaling factor
at time slot t as σk(t), where 0 ≤ σk(t) ≤ 1. Therefore,
if φk denotes the number of packets in each task k, and qk
denotes the number of bits in each packet, then original the
data amount (in bits) of task k is φkqk, whereas the submitted
data amount (in bits) of task k with compression is σk(t)φkqk.

Let ρk denote the expected inference accuracy for task k.
Intuitively, the expected accuracy ρk is positive related to the
compression factor σk(t). In this paper, we adopt the data-
driven approach used in [5], where ρk can be determined
through a regression model. This approach takes into account
for the explicit dependencies of the accuracy function ρk(σ) on
the compression scaling factor, and assumes that this function
is provided as part of the problem input. In our performance
evaluation, we will adhere to the function defined in [5], which
treats accuracy as a piecewise function applicable only to
discrete solution values.

C. Communication Model

1) UE-Satellite Data Transmission: The communication
between UEs and satellites is achieved by wireless channels,
which is susceptible to effects of carrier frequency, noise,
transmission distance and bandwidth capacity. To describe the
communication model between UEs and satellites, we first
introduce the signal-to-noise ratio (SNR) from UE u to satellite
i for task k at time slot t as follows,

γku,s(t) =
pku,s(t)H

k
u,s(t)

bku,s(t)I0
, (1)

where pku,s(t) denotes the transmit power from UE u ∈ U to
satellite s at time slot t, Hk

u,s(t) is the channel gain, bku,s(t)
is the allocated uplink bandwidth between UE u and satellite
s, and I0 is the noise power spectral density. Naturally, there
exist a transmit power constraint,

pth ≤ pku,s(t) ≤ pmax, (2)



where pth is the threshold to guarantee that data can be
transmitted, and pmax is the maximal transmit power of an UE.
According to the Shannon-Hartley Theorem, the achievable
data rate of uplink transmission from UE u to satellite s at
time slot t is computed by,

rku,s(t) = bku,s(t) log2(1 + γku,s(t)). (3)

Note that in this paper we assume that during the data
transmission process, for the same UE, its communication-
related parameters’ values keep the same across tasks. That
is, γku,s(t) = γu,s(t), rku,s(t) = ru,s(t).

As a result, the uplink transmission time Dtr,k
u,s(t) of task k

from UE u to satellite s at time slot t is computed by,

Dtr,k
u,s(t) =

σk(t)φkqk
rku,s(t)

. (4)

Meanwhile, the total energy consumption of uplink trans-
mission is computed by,

Etr,k
u,s (t) = Eku,s(t) +ERX,k

u,s (t) = (pu,s(t) +pRX)Dtr,k
u,s(t), (5)

where Eku,s(t) and ERX,k
u,s (t) are the energy consumption of

UE u’s data transmission and satellite s’s data receiving,
respectively. pRX is the receiving power of a satellite. pRX
is often a fixed value and is assumed to be unified across
satellites in this paper.

2) Data Forwarding Between Satellites: The communi-
cation between satellites is achieved by inter-satellite links
(ISLs). Assume that data traffic starts from smin to smax,
where the former is selected from the visible set of satellites
of the UE that generates the data, and the later is selected to
process the task. Let pISL be the transmit and receive power
of satellites when delivering data by ISLs, and rISL be the
achievable data rate of ISL, which are fixed values. Then
the total forwarding delay during uploading procedure can be
computed by

Dk
smin,smax

(t) =
nhop
k σk(t)φkqk

rISL
, (6)

where nhop
k is the number of hops for data transfer from smin

to smax. The energy consumption of the communication relay
executed along the path from smin to smax is computed by,

Eksmin,smax
(t) = 2pISLD

k
smin,smax

(t). (7)

Given that the forwarding delay is severe in SAN, we adopt
the shortest path routing method in this paper, which is most
likely to approach the optimal method.

D. Computation Model

The computational complexity of DL models is typi-
cally measured using floating point operations per second
(FLOPS) [7]. According to the compression level σk(t) of task
k, it chooses a suitable DNN model for inference according
to a pre-defined piecewise function to achieve the required
accuracy. The model inference/computation latency and energy
consumption are all determined by this chosen model. Assume

there are Na = {1, . . . , na, . . . , Na} models available for
application class a to choose, each of which requires fna

FLOPS of computation and Dna s for model reference.

Ecmp,ku,s (t) = fnaDna (8)

III. PROBLEM FORMULATION

In order to formulate the optimization problem, we first
introduce a binary matrix x = {xks(t)|k ∈ K, s ∈ S, t ∈ T }
to describe the task association strategy. xks(t) = 1 indicates
that task k accesses node s for data processing, and xks(t) = 0
otherwise. Specifically, at time slot t, we use xksmin

(t) to
indicate whether task k chooses satellite node smin to start
its data transmission, while xksmax

(t) to indicate whether task
k chooses satellite node smax for model inference.

A. Fundamental Constraints

There are six types of fundamental constraints in the
SemSAN slicing problem, one of which is the placement
constraint, three of which are resource capacity constraints,
two of which are UE QoS guarantee constraints. The three
resource capacity constraints are communication, computation
and energy capacity constraints. And the two QoS guarantee
constraints are delay constraints and inference accuracy con-
straints. In the following we will specifically introduce these
four constraints.

1) Placement Constraints: There are two types of place-
ment constraints. The first is applied to smin, that the dynamic
satellite topology naturally constrains the satellite clusters that
UEs can potentially directly arrive. Let S IN

u (t) be the set of
satellites that are visible to UE u at time slot t, then the place-
ment constraint on xksmin

(t) is
∑
t∈T

∑
smin∈S IN

u (t) x
k
smin

(t) ∈
{0, 1}.

The second placement constraint is applied to smax, that
there may not be the required DNN models on certain satel-
lites. Let SMOD

a be the set of satellites that possess the DNN
models for application class a, then the placement constraint
on xksmax

(t) is
∑
t∈T

∑
smax∈SMOD

a
xksmax

(t) ∈ {0, 1}.
These two placement constraints are interrelated, that for

any task k ∈ K, once it is assigned to access the SAN
via a particular satellite smin (i.e., xksmin

(t) = 1), it must
simultaneously selects one of the satellites smax for model
inference (i.e., xksmax

(t) = 1). Therefore, we further combine
the two placement constraints as follows,

∑
t∈T

 ∑
smin∈S IN

u (t)

xksmin
(t)

 ∑
smax∈SMOD

a

xksmax
(t)

 ∈ {0, 1}.
(9)

2) Resource Capacity Constraints: As for the communica-
tion capacity, we mainly consider the G2S links. Let BG2S be
the bandwidth available for the uplink data transmission from
UEs to satellites, then bandwidth constraints are formalized as
follows, ∑

k∈K

∑
smin∈S

xk,smin(t)bk,smin(t) ≤ BG2S. (10)



Meanwhile, given that tasks are offloaded to SAN for
processing, each SAN node s should make sure that the
computation resource required by its workload is no larger
than its computation capacity. Let Fs be the floating point
operations per second (FLOPS) of node s. Therefore, for
each SAN node s ∈ S, its computation capacity constraint
is formalized as follows,∑

a∈A

∑
k∈Ka

xk,smax
(t)fna

≤ Fs. (11)

At last, for the energy consumption constraint, that for each
UE u ∈ U , its overall energy consumption during T time slots
is no larger than its electricity capacity Emax

u . The energy
consumption constraint of each UE is formulated as follows,∑

t∈T

∑
k∈Ku

∑
s∈S

xk,s(t)E
k
u,s(t) ≤ Emax

u . (12)

3) QoS Constraints: The end-to-end delay of a task consists
of two parts: transmission and computation. Let Da be the
maximum latency tolerable for class a tasks, then based on the
transmission model and the computation model we introduce
in Section III, for any task in application class a ∈ A,
the expected E2E delay constraint of task k at time slot is
formalized as follows,

xksmin
(t)Dtr,k

u,smin
(t) + xksmin

(t)xksmax
(t)Dk

smin,smax
(t)

+ xksmax
(t)Dcmp,k

a,smax
(t) ≤ Dmax

a . (13)

Now we come to another QoS guarantee constraint, infer-
ence accuracy constraint. Let εa be the minimum expected
prediction accuracy on the selected object class a, then the
expected inference accuracy ρk(t), which is a function of
σk(t), is only acceptable if

ρk(t)xksmin
(t)xksmax

(t) ≥ εa, ∀k = (u, a, κ) ∈ K. (14)

B. Problem Formulation

We first review the decision variables of the optimization
problem: task association matrix x; UE transmit power matrix
p; UE bandwidth allocation matrix b; and task compression
scaling factor matrix σ.

As we mentioned in the introduction, there exists a trade-
off between the system energy consumption and the to-
tal number of accepted tasks. The SemSAN system en-
ergy consumption consists of two parts, transmission and
computation energy consumptions. The total transmission
energy consumption over all time slots is formalized as
Etr =

∑
t∈T

∑
u∈U

∑
smin∈S IN

u

∑
k∈Ku

xskmin
Etr,k
u,smin

(t), while
the total computation energy consumption over all time slots is
formalized as Ecmp =

∑
t∈T

∑
smax∈SMOD

a
xksmax

(t)Ecmp,k
u,s (t).

Meanwhile, the total number of admitted tasks within T
time period is formalized by,

M =
∑
t∈T

∑
k∈K

∑
smin,smax∈S

xksmin
(t)xksmax

(t) (15)

At this point, our optimization problem can be described as
how to process as many as DL tasks as possible within the

time period T , ensuring that the SAN not only meets the QoS
requests of the selected tasks but also minimizes the system’s
energy consumption. It can be formalized as follows,

max
x,p,b,σ

η
M

K
+ (1− η)

Etr + Ecmp

Emax
(P1)

s.t. (2), (9)− (14),

where η ∈ [0, 1] is a balancing factor defining the relative
weight of total admitted number of tasks and energy, Emax =∑
u∈U E

max
u +

∑
s∈S E

max
s is the maximal available energy

of the SAN system.

IV. SEMSAN SLICING SCHEME

A. SemSAN Slicing Problem Analysis

Four keen observations are concluded as follows to inspire
our approach to solving (P1). Please note that we only provide
qualitative proof for these conclusions due to space concern.

Theorem 1. The optimal solution to (P1) is achieved if and
only if the compression factor σ is the minimum that satisfies
the accuracy requirement εa from (14), irrespective of the val-
ues of other varibales. That is, σ∗k = minσk

σk s.t., ρk(σ) >
εa.

Proof: If we set x,b,p as their optimal values x∗,b∗,p∗,
then the objective of (P1) becomes a linear function of
σk(t). Meanwhile, the left-hand-sides of (10) – (13) are all
monotonically increasing over σk(t). As a result, to maximize
the objective function, it is desired for the compression factor
σk(t) to take its minimum value that guarantees the expected
model inference accuracy εa.

Theorem 2. The SemSAN slicing problem (P1) is NP-hard.

Proof: We prove the result by showing that (P1) is an
instance of the binary multi-dimentional knapsack problem
(0/1 d-KP), which is NP-hard [8]. Based on Theorem 1, the
original problem (P1) can be simplified w.r.t. three decision
variables x, p and b. Consider an extreme case when there
are no placement constraints. Then the simplified (P1) is
reduced to be an instance of 0/1 d-KP, where there are multiple
resources (i.e., bandwidth and CPU/GPU) to be considered.

Now that we have a simplified version of (P1), two other
theorems are introduced to analyse the simplified (P1)’s char-
acteristics.

Theorem 3. Once a task is allowed to be transmitted, its
delay is monotonically decreasing w.r.t. the allocated band-
width and transmission power of that task, respectively. That
is, if xk(t) = 1, then the delay Dk(t) = Dtr,k

u,smin
(t) +

Dk
smin,smax

(t)+Dcmp,k
a,smax

(t) of task k at time slot t is monoton-
ically decreasing w.r.t. the bandwidth allocation bku,s(t) and
the transmit power pku,s(t), respectively.

Proof: Recall the expression of delay function Dk(t), we
find that for a given value of pu,s(t), Dk(t) is a function



Algorithm 1: Greedy SemSAN Slicing Algorithm

1 Kc ← K . Consider all tasks candidate for admission
2 for for all k ∈ Kc do
3 if ∃σ∗k then
4 σk ← σ∗k
5 pk ← pmax

6 else
7 Kc ← Kc \ k
8 end
9 end

10 for t = 1 to T do
11 xsmax

,Uc ← B&B(U(t))
12 bku,s ← Progress Filling(Uc)
13 end

of bu,s(t), and the first derivative of Dk(t) w.r.t. bu,s(t) is
computed by

∂Dk(t)

∂bu,s(t)
= − σ∗k(t)φkqk[

bu,s(t) log2

(
1 +

pu,s(t)Hu,s(t)
bu,s(t)I0

)]2
︸ ︷︷ ︸

Ω1

×
[
log2

(
1 +

pu,s(t)Hu,s(t)

bu,s(t)I0

)
− pu,s(t)Hu,s(t)

bu,s(t)I0 + pu,s(t)Hu,s(t)

]

<− Ω1 ×

 pu,s(t)Hu,s(t)
bu,s(t)I0

1 +
pu,s(t)Hu,s(t)
bu,s(t)I0

− pu,s(t)Hu,s(t)

bu,s(t)I0 + pu,s(t)Hu,s(t)


=− Ω1 × 0 = 0, (17)

where the inequality is derived from the fact that log2(1 +
x) > x

1+x and Ω1 > 0. Therefore, Dk(t) is monotonically
decreasing w.r.t. bku,s(t). Follow the same logic, the first
derive of Dk(t) w.r.t. pku,s(t) is proved to be smaller than
0. Consequently, the theorem is proved.

Theorem 4. Once a task is allowed to be transmitted, its
transmitter’s energy consumption is monotonically decreasing
w.r.t. the allocated bandwidth and transmission power of that
task, respectively.

Proof: Recall the expression of Eku,s(t), we find that for
a given value of bku,s, E

k
u,s(t) is a function of pu,s(t), and the

first derivative of Eku,s(t) w.r.t. pku,s(t) is computed by

∂Eku,s(t)

∂pu,s(t)
= −

[σ∗k(t)φkqk]2Hk
u,s(t)p

k
u,s(t)

[rku,s(t)]
3(1 + γku,s(t))

< 0. (18)

Follow the same logic, the first derive of Eku,s(t) w.r.t. bku,s(t)
is also proved to be smaller than 0. Consequently, the theorem
is proved.

B. Greedy Online Algorithm for SemSAN Slicing

In practice, tasks are generated online, meanwhile their
movements and visible set of satellites are unlikely to predict.
As a result, it is impractical to make a plan ahead for future
arriving tasks. Moreover, constraints (10), (11) and (13) are

defined in each time slot, whereas the remaining (12) is defined
over all time slots. The above two reasons inspire us to
greedily exhaust the G2S bandwidth or satellite computation
resources in each time slot to serve as many as DL tasks as
possible to approximate the optimal solutions to (P1).

Such a resource exhaustion leads us to the decoupling of
(P1), where x, b and p are coupled. We decouple (P1) into
three sub-problems task processing association, bandwidth
allocation and transmit power scheduling, which are detailed
as follows, meanwhile the greedy algorithm is shown in Alg. 1.

Task processing assocation: We first regard b and p as
constants, then the task processing association is a muti-KP
(MKP) that is defined on xksmax

(t), where there are multiple
knapsacks (i.e., satellites) and multiple UEs. Each UE has
multiple tasks that needs to be placed in the knapsacks such
that their total weights (i.e., the objective of (P1)) can be
maximized. This MKP problem can be solved by classic
algorithms such as Branch-and-Bound (B&B) techniques [9],
readily available within well-established solvers, e.g., CPLEX
and MATLAB.

Bandwidth allocation: The optimal solution of xksmax
(t)

indicates the possible UEs and tasks that may be processed
in time slot t. With these possible tasks, our next step is
to fix their values of pku,s(t) to the maximum pmax. This is
because, according to Theorem 4, Eku,s(t) is monotonically
decreasing w.r.t. pku,s(t), and the maximum of pku,s(t) leads to
the minimum energy consumption on UE u. At this point, (P1)
becomes a bandwidth allocation problem. From Theorem 3 we
know that the larger the bandwidth bku,s(t) is, the smaller the
delay Dk

u,s(t) UE u experiences. Therefore, in the bandwidth
allocation problem, all participating UEs are attempting to
maximize their allocated bandwidth. The optimal bandwidth
solution is achieved using the progressive filling method [10],
where all UEs increase their bandwidth at the same speed until
the available G2S link bandwidth is fully occupied.

Transmit power scheduling: With the optimal solutions
obtained from the above two subproblems, each UE is aware
of the number of tasks that would be executed in each time
slot. As a result, an UE will transmit the desired number of
tasks in each time slot at its maximum power pmax until its
battery is depleted.

V. PERFORMANCE EVALUATION

A. Setup

1) Dataset and DNN models: We consider the object
detection problem in CV. Specifically, we consider (i) the
widely known Common Objects in Context (COCO) [11] as
the dataset, which is a large-scale image database containing
more than 200K labeled examples across 80 object classes; (ii)
the YOLOX classifier series [12], where tiny-YOLOX, nano-
YOLOX, and regular YOLOX are considered.

2) System Models: Consider a SAN with 10 to 60 UEs
that generate computation-intensive DL tasks randomly on
the ground. Each UE generates 30 DL tasks every minute
on average. There are 12 LEO satellites distributed over eight
circular orbits at 600 km with the Walker constellation. In each
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Fig. 2: System performance w.r.t. 10 to 60 number of UEs.
(a) Average energy consumption in each time slot, and (b)
average admitted task number in each time slot.

time slot, an UE is only capable to access 3 of its nearest
satellites, and the distance between an UE to its accessible
satellites is randomly distributed between 1,000 to 2,000 km.
For tasks generated by each user, their required accuracy
thresholds for model inference are “Low”: 0.35, “Medium”:
0.55, “High”: 0.75, with proportions of 25%, 50%, and 25%,
respectively. The length of each time slot τ is set as 1 s. The
G2S link bandwidth is 1 MHz, pmax is 0.01 W, I0 is -174 dB,
RISL is 10 Mbps, η is 0.5, Dmax

a is 0.5 s.
3) Baselines: Three baselines are considered in (i) SI-

EDGE [13], the state-of-the-art algorithm for RAN slicing; (ii)
Sem-O-RAN [5], the state-of-the-art semantic O-RAN slicing
algorithm that only applies to stationary RANs; (iii) FlexRes,
which implements SAN slicing following the greedy SemSAN
algorithm but does not consider the semantics.

B. Effect of UE numbers on System Performance

Fig. 2 shows the effect of UE numbers on the average
energy consumption and admitted tasks in each time slot.
We observe that SemSAN performs the best in average task
energy consumption but performs the second best in accom-
modating task number. This is because SemSAN aims to
strike a balance between energy consumption and task number
accepted, whereas Sem-O-RAN aims to maximize the task
number accepted. Fortunately, the advantage of Sem-O-RAN
is not obvious. We attribute this phenomenon to the fact that
Sem-O-RAN does not consider the size reduction of DNN
models. This further validates the superiority of SemSAN.

C. Effect of Model Accuracy on System Performance

Fig. 3 shows the average E2E delay and energy consump-
tion experienced by tasks that require different accuracies.
The results precisely align with our expectations, indicating
that when tasks have higher accuracy requirements, they
correspondingly consume more energy and take longer for
transmission and processing.

VI. CONCLUSIONS

We have proposed SemSAN, a semantic SAN slicing
approach for NextG AI-native NTNs. SemSAN slicing is
formalized as a combinational optimization problem, with its
objective to maximize the total number of DL tasks accepted
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Fig. 3: System performances w.r.t. model inference accuracy
where the UE number is 40. (a) Average E2E latency experi-
enced by tasks, and (b) average system energy consumption.

while still minimizing the total system energy consumption.
Meanwhile, the effect brought by the dynamic SAN topology
is quantified as placement constraints, while the relationships
between task compression factor and model size, task com-
pression factor and accuracy are quantified with data-driven
approaches. Moreover, we have proposed an online greedy
SemSAN slicing algorithm that not only approaches to the
optimal solutions but also easily to be implemented in practice.
Extensive evaluation validates the effectiveness of SemSAN in
energy saving and supporting substantial number of DL tasks.
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